
1. Introduction

1.1 Why empirical likelihood

• nonparametric method: without having to assume the form of

the underlying distribution

• likelihood based inference: taking the advantages of likelihood
methods

• alternative method when other (more conventional) methods

are not applicable

Example 1. Somites of earthworms.

Earthworms have segmented bodies. The segments are known as

somites. As a worm grows, both the number and the length of its

somites increases.

The dataset contains the No. of somites on each of 487 worms

gathered near Ann Arbor in 1902.

The histogram shows that the distribution is skewed to the left,

and has a heavier tail to the left.

Skewness: γ =
E{(X−EX)3}
{Var(X)}3/2 , — a measure for symmetry

Kurtosis: κ =
E{(X−EX)4}
{Var(X)}2 −3, — a measure for tail-heaviness

Remark. (i) For N(µ, σ2), γ = 0 and κ = 0.

(ii) For symmetric distributions, γ = 0.

(iii) When κ > 0, heavier tails than those of N(µ, σ2).

Estimation for γ and κ

Let X̄ = n−1
∑
1≤i≤nXi, and and σ̂2 = (n−1)−1∑1≤i≤n(Xi− X̄)2.

γ̂ =
1

nσ̂3

n∑

i=1

(Xi − X̄)3, κ̂ =
1

nσ̂4

n∑

i=1

(Xi − X̄)4.

How to find the confidence sets for (γ, κ)?

Answer: Empirical likelihood contours.

Let l(γ, κ) be the (log-) empirical likelihood function of (γ, κ). The

confidence region for (γ, κ) is defined as

{(γ, κ) : l(γ, κ) > C},

where C > 0 is a constant determined by the confidence level, i.e.

P{l(γ, κ) > C} = 1− α.



In the second panel, the empirical likelihood confidence regions
(i.e. contours) correspond to confidence levels of 50%, 90%,
95%, 99%, 99.9% and 99.99%.

Note. (γ, κ) = (0,0) is not contained in the confidence regions

Why do conventional methods not apply?

Parametric likelihood. Not normal distribution! Likelihood infer-

ence for high moments is typically not robust wrt a misspeci-

fied distribution.

Bootstrap. Difficult in picking out the confidence region from

a point cloud consisting of a large number of bootstrap esti-

mates for (γ, κ).

For example, given 1000 bootstrap estimates for (γ, κ), ideally

95% confidence region should contain 950 central points.

In practice, we restrict to rectangle or ellipse regions in order

to facilitate the estimation.

1.2 Introducing empirical likelihood

Let X = (X1, · · · , Xn)τ be a random sample from an unknown

distribution F (·). We know nothing about F (·).

In practice we observe Xi = xi (i = 1, · · · , n), x1, · · · , xn are n

known numbers.

Basic idea. Assume F is a discrete distribution on {x1, · · · , xn}
with

pi = F (xi), i = 1, · · · , n,
where

pi ≥ 0,
n∑

i=1

pi = 1.

What is the likelihood function of {pi}? What is the MLE?

Since

P{X1 = x1, · · · , Xn = xn} = p1 · · · pn,

the likelihood is

L(p1, · · · , pn) ≡ L(p1, · · · , pn;X) =
n∏

i=1

pi,

which is called an empirical likelihood.

Remark. The number of parameters is the same as the number

of observations.

Note
( n∏

i=1

pi
)1/n ≤ 1

n

n∑

i=1

pi =
1

n
,

the equality holds iff p1 = · · · = pn = 1/n.



Put p̂i = 1/n, we have

L(p1, · · · , pn;X) ≤ L(p̂1, · · · , p̂n;X)

for any pi ≥ 0 and
∑
i pi = 1.

Hence the MLE based on the empirical likelihood, which is called

maximum empirical likelihood estimator (MELE), puts the

equal probability mass 1/n on the n observed values x1, · · · , xn.

Namely the MELE for F is the uniform distribution on observed

data points. The corresponding distribution function

Fn(x) =
1

n

n∑

i=1

I(Xi ≤ x)

is called the empirical distribution of the sample X = (X1, · · · , Xn)τ .

Example 2. Find the MELE for µ ≡ EX1.

Corresponding to the EL,

µ =
n∑

i=1

pixi = µ(p1, · · · , pn).

Therefore, the MELE for µ is

µ̂ = µ(p̂1, · · · , p̂n) =
1

n

n∑

i=1

xi =
1

n

n∑

i=1

Xi = X̄.

Similarly, the MELE for µk ≡ E(Xk
1) is the simply the sample k-th

moment:

µ̂k =
1

n

n∑

i=1

Xk
i .

Remarks. (i) MELEs, without further constraints, are simply the

method of moments estimators, which is not new.

(ii) Empirical likelihood is a powerful tool in dealing with testing

hypotheses and interval estimation in a nonparametric manner

based on the likelihood tradition, which also involves evaluating

MELEs under some further constraints.

2. Empirical likelihood for means

Let X1, · · · , Xn be a random sample from an unknown distribution.

Goal: test hypotheses on µ ≡ EX1, or find confidence intervals

for µ.

Tool: empirical likelihood ratios (ELR)

2.1 Tests Consider the hypotheses

H0 : µ = µ0 vs H1 : µ 6= µ0.

Let L(p1, · · · , pn) =
∏
i pi. We reject H0 for large values of the

ELR

T =
maxL(p1, · · · , pn)
maxH0 L(p1, · · · , pn)

=
L(n−1, · · · , n−1)
L(p̃1, · · · , p̃n)

,

where {p̃1} are the constrained MELEs for {pi} under H0.



Two problems:

(i) p̃i =?

(ii) What is the distribution of T under H0?

(i) The constrained MELEs p̃i = pi(µ0), where {pi(µ)} are the

solution of the maximisation problem:

max
{pi}

n∑

i=1

log pi

subject to the conditions

pi ≥ 0,
n∑

i=1

pi = 1,
n∑

i=1

pixi = µ.

The solution for the above problem is given in the theorem below. Note

x(1) ≡ min
i
xi ≤

n∑

i=1

pixi ≤ max
i
xi ≡ x(n).

It is natural we require x(1) ≤ µ ≤ x(n).

Theorem 1. For µ ∈ (x(1), x(n)),

pi(µ) =
1

n− λ(xi − µ)
> 0, 1 ≤ i ≤ n, (1)

where λ is the unique solution of the equation

n∑

j=1

xj − µ
n− λ(xj − µ)

= 0 (2)

in the interval ( n
x(1)−µ

, n
x(n)−µ

).

Proof. We use the Lagrange multiplier technique to solve this

optimisation problem. Put

Q =
∑

i

log pi+ ψ
(∑

i

pi − 1) + λ(
∑

i

pixi − µ).

Letting the partial derivatives of Q w.r.t. pi, ψ and λ equal 0, we

have

p−1i + ψ+ λxi = 0 (3)∑

i

pi = 1 (4)

∑

i

pixi = µ (5)

By (3),

pi = −1/(ψ+ λxi). (6)

Hence , 1 + ψpi+ λxipi = 0, which implies ψ = −(n+ λµ). This

together with (6) imply (1). By (1) and (5),
∑

i

xi
n− λ(xi − µ)

= µ. (7)

It follows (4) that

µ = µ
∑

i

pi =
∑

i

µ

n− λ(xi − µ)
.

This together with (7) imply (2).

Now let g(λ) be the function on the LHS of (2). Then

ġ(λ) =
∑

i

(xi − µ)2
{n− λ(xi − µ)}2

> 0.

Hence g(λ) is a strictly increasing function. Note

lim
λ↑ n

x(n)−µ
g(λ) =∞, lim

λ↓ n
x(1)−µ

g(λ) = −∞,

Hence g(λ) = 0 has a unique solution between in the interval
( n

x(1) − µ
,

n

x(n) − µ
)
.

Note for any λ in this interval,

1

n− λ(x(1) − µ)
> 0,

1

n− λ(x(n) − µ)
> 0,

and 1/{n − λ(x − µ)} is a monotonic function of x. It holds that

pi(µ) > 0 for all 1 ≤ i ≤ n.



Remarks. (a) When µ = x̄ = X̄, λ = 0, and

pi(µ) = 1/n, i = 1, · · · , n.
It may be shown for µ close to E(Xi), and n large

pi(µ) ≈
1

n
· 1

1+ x̄−µ
S(µ)

(xi − µ)
,

where S(µ) = 1
n

∑
i(xi − µ)2.

(b) We may view

L(µ) = L{p1(µ), · · · , pn(µ)}.
as a profile empirical likelihood for µ.

Hypothetically consider an 1-1 parameter transformation from

{p1, · · · , pn} to {µ, θ1, · · · , θn−1}. Then

L(µ) = max
{θi}

L(µ, θ1, · · · , θn−1) = L{µ, θ̂1(µ), · · · , θ̂n−1(µ)}

(c) The likelihood function L(µ) may be calculated using R-code

and Splus-code, downloaded at

http://www-stat.stanford.edu/∼owen/empirical/

(ii) The asymptotic theorem for the classic likelihood ratio tests

(i.e. Wilks’ Theorem) still holds for the ELR tests.

Let X1, · · · , Xn i.i.d., and µ = E(X1). To test

H0 : µ = µ0 vs H1 : µ 6= µ0,

the ELR statistic is

T =
maxL(p1, · · · , pn)
maxH0 L(p1, · · · , pn)

=
(1/n)n

L(µ0)

=
n∏

i=1

1

npi(µ0)
=

n∏

i=1

{
1− λ

n
(Xi − µ0)

}
.

where λ is the unique solution of

n∑

j=1

Xj − µ0
n− λ(Xj − µ0)

= 0.

Theorem 2. Let E(X2
1) <∞. Then under H0,

2 logT = 2
n∑

i=1

log
{
1− λ

n
(Xi − µ0)

}
→ χ21

in distribution as n→∞.

A sketch proof. Under H0, EXi = µ0. Therefore µ0 is close to
X̄ for large n. Hence the λ, or more precisely, λn ≡ λ/n is small,

which is the solution of f(λn) = 0, where

f(λn) =
1

n

n∑

j=1

Xj − µ0
1− λn(Xj − µ0)

.

By a simple Taylor expansion 0 = f(λn) ≈ f(0) + ḟ(0)λn,

λn ≈ −f(0)
/
ḟ(0) = −(X̄ − µ0)

/
1

n

∑

j

(Xj − µ0)2.

Now

2 logT ≈ 2
∑

i

{−λn(Xi − µ0)−
λ2n
2
(Xi − µ0)2}

= −2λnn(X̄ − µ0)− λ2n
∑

i

(Xi − µ0)2 ≈
n(X̄ − µ0)2

n−1
∑
i(Xi − µ0)2

.

By the LLN, n−1
∑
i(Xi − µ0)

2 → Var(X1). By the CLT,
√
n(X̄ −

µ0)→ N(0,Var(X1)) in distribution. Hence 2 logT → χ21 in distri-

bution.



2.2 Confidence intervals for µ.

For a given α ∈ (0,1), since we will not reject the null hypothesis

H0 : µ = µ0

iff 2 logT < χ21,1−α, where P{χ21 ≤ χ21,1−α} = 1− α. For α = 0.05,

χ21,1−α = 3.84.

Hence a 100(1− α)% confidence interval for µ is
{
µ
∣∣∣ − 2 log{L(µ)nn} < χ21,1−α

}

=
{
µ
∣∣∣

n∑

i=1

log pi(µ) > −0.5χ21,1−α − n logn
}

=
{
µ
∣∣∣

n∑

i=1

log{npi(µ)} > −0.5χ21,1−α
}
.

Example 3. Darwin’s data: gains in height of plants from cross-

fertilisation

X = height(Cross-F) - height(Self-F)

15 observations:

6.1, -8.4, 1.0, 2.0, 0.7, 2.9, 3.5, 5.1, 1.8, 3.6, 7.0, 3.0,

9.3, 7.5, -6.0

The sample mean X̄ = 2.61, the standard error s = 4.71.

Is the gain significant?

Intuitively: YES, if no two negative observations -8.4 and -6.0.

Let µ = EXi.

H0 : µ = 0 vs H1 : µ > 0

(i) Standard approach: Assume {X1, · · · , X15} is a random sample

from N(µ, σ2)

MLE: µ̂ = X̄ = 2.61

The t-test statistic:

T =
√
nX̄/s = 2.14

Since T ∼ t(14) under H0, the p-value is 0.06 — significant but

not overwhelming.

Is N(µ, σ2) an appropriate assumption? as the data do not

appear to be normal (with a heavy left tail); see Fig(a).
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empirical distribution.

The profile likelihood lk(µ) is

plotted against µ for k = 1

(solid), 2 (dashed), 4 (dot-

ted), and 8 (dot-dashed).



(ii) Consider a generalised normal family

fk(x|µ, σ) =
2−1−1/k

Γ(1+ 1/k)σ
exp

{
− 1

2

∣∣∣∣
x− µ
σ

∣∣∣∣
k}
,

which has the mean µ. When k = 2, it is N(µ, σ2).

To find the profile likelihood of µ, the ‘MLE’ for σ is

σ̂k ≡ σ̂(µ)k =
k

2n

n∑

i=1

|Xi − µ|k.

Hence

lk(µ) = lk(µ, σ̂) = −n logΓ(1 + 1

k
)− n(1 + 1

k
) log2− n log σ̂ − n

k
.

Fig.(b) shows the MLE µ̂ = µ̂(k) varies with respect to k. In fact

µ̂(k) increases as k decreases.

If we use the distribution functions with k = 1 to fit the data,

the p-value for the test is 0.03 – much more significant than that

under the assumption of normal distribution.

(iii) The empirical likelihood ratio test statistic 2 logT = 3.56,

which rejects H0 with the p-value 0.04.

The 95% confidence interval is

{µ
∣∣∣
15∑

i=1

log pi(µ) > −1.92− 15 log(15)} = [0.17,4.27].

The DE density is of the form 1
2σe

−|x−µ|/σ. With µ fixed, the

MLE for σ is n−1
∑
i |Xi − µ|. Hence the parametric log (profile)

likelihood is

−n log
∑

i

|Xi − µ|.
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Parametric log-likelihood (solid curve) based on the DE distribu-

tion, and the empirical log-likelihood (dashed curve). (Both curves

were shifted vertically by their own maximum values.)

3. Empirical likelihood for random vectors

Let X1, · · · ,Xn be i.i.d. random vectors from distribution F .

Similar to the univariate case, we assume

pi = F (Xi), i = 1, · · · , n,

where pi ≥ 0 and
∑
i pi = 1. The empirical likelihood is

L(p1, · · · , pn) =
n∏

i=1

pi

Without any further constraints, the MELEs are

p̂i = 1/n, i = 1, · · · , n.



3.1 EL for multivariate means

The profile empirical likelihood for µ = EX1 is

L(µ) = max

{ n∏

i=1

pi

∣∣∣∣ pi ≥ 0,
n∑

i=1

pi = 1,
n∑

i=1

piXi = µ

}
≡

n∏

i=1

pi(µ),

where pi(µ) is the MELE of pi with the additional constraint EXi =

µ. Define the ELR

T ≡ T (µ) =
L(1/n, · · · ,1/n)

L(µ)
= 1

/ n∏

i=1

{npi(µ)}.

Theorem 3. Let X1, · · · ,Xn be d×1 i.i.d. with mean µ and finite

covariance matrix Σ and |Σ| 6= 0. Then as n→∞,

2 log{T (µ)} = −2
n∑

i=1

log{npi(µ)} → χ2d

in distribution.

Remarks. (i) In the case that |Σ| = 0, there exists an integer q < d

for which, Xi = AYi where Yi is a q × 1 r.v. with |Var(Yi)| 6= 0,

and A is a d × q constant matrix. The above theorem still holds

with the limit distribution replaced by χ2q .

(ii) The null hypothesis H0 : µ = µ0 will be rejected at the signif-

icance level α iff

n∑

i=1

log{npi(µ0)} ≤ −0.5χ2d,1−α,

where P{χ2d ≤ χ2d,1−α} = 1− α.

(iii) A 100(1− α)% confidence region for µ is

{
µ

∣∣∣∣
n∑

i=1

log{npi(µ)} ≥ −0.5χ2d,1−α
}
.

(iv) Bootstrap calibration. Since (ii) and (iii) are based on an

asymptotic result. When n is small and d is large, χ2d,1−α may be
replaced by the [Bα]-th largest value among 2 logT ∗1 , · · · ,
2 logT ∗B which are computed as follows.

(a) Draw i.i.d. sample X∗1, · · · ,X∗n from the uniform distri-

bution on {X1, · · · ,Xn}. Let

T ∗ = 1
/ n∏

i=1

{np∗i (X̄)},

where X̄ = 1
n

∑n
i=1Xi, and p∗i (µ) is obtained in the same

manner as pi(µ) with {X1, · · · ,Xn} replaced by {X∗1, · · · ,X∗n}.

(b) Repeat (a) B times, denote the B values of T ∗ as

T ∗1 , · · · , T ∗B.

We may draw an X∗ from the uniform distribution on {X1, · · · ,Xn}
as follows: draw Z ∼ U(0,1), define X∗ = Xi if Z ∈ [i−1n , i

n).

Since the limiting distribution is free from the original distribution

of {Xi}, we may draw X∗i from any distribution {π1, · · · , πn} instead
of the uniform distribution used above. Of course now p∗i (X̄)
should be replaced by p∗(µ̃), where µ̃ =

∑
i πiXi.

(v) Computing pi(µ).

Assumptions: |Var(Xi)| 6= 0, and µ is an inner point of the convex

hull spanned by the observations, i.e.

µ ∈
{ n∑

i=1

piXi

∣∣∣ pi > 0,
n∑

i=1

pi = 1
}
.

This ensures the solutions pi(µ) > 0 exist.



We solve the problem in 3 steps:

1. Transform the constrained n-dim problem to a con-

strained d-dim problem.

2. Transform the constrained problem to an unconstrained

problem.

3. Apply a Newton-Raphson algorithm.

Put

l(µ) ≡ logL(µ) =
n∑

i=1

log pi(µ)

= max

{ n∑

i=1

log pi

∣∣∣∣ pi ≥ 0,
n∑

i=1

pi = 1,
n∑

i=1

piXi = µ

}
.

Step 1:

Similar to Theorem 1, the LM method entails

pi(µ) =
1

n− λτ(Xi − µ)
, i = 1, · · · , n,

where λ is the solution of

n∑

j=1

Xj − µ

n− λτ(Xj − µ)
= 0. (8)

Hence

l(µ) = −
n∑

i=1

log{n− λτ(Xi − µ)} ≡M(λ). (9)

Note ∂
∂λ
M(λ) = 0 leads to (8), and

∂2M(λ)

∂λ∂λτ
=

n∑

i=1

(Xi − µ)(Xi − µ)τ

{n− λτ(Xi − µ)}2 > 0.

Thus M(·) is a convex function on any connected sets satisfying

n− λτ(Xi − µ) > 0, i = 1, · · · , n. (10)

Note. (10) and (8) together imply
∑
i pi(µ) = 1.

The original n-dimensional optimisation problem is equivalent to

a d-dimensional problem of minimising M(λ) subject to the con-

straints (10).

Let Hλ be the set consisting all the values of λ satisfying

n− λτ(Xi − µ) > 1, i = 1, · · · , n.
Then Hλ a convex set in Rd, which contains the minimiser of the
convex function M(λ). (See ‘Note’ above)

Unfortunately M(λ) is not defined on the sets

{λ | n− λτ(Xi − µ) = 0}, i = 1, · · · , n.

Step 2: We extend M(λ) outside of the set Hλ such that it is still
a convex function on the whole Rd.

Define

log⋆(z) =

{
log z z ≥ 1,

−1.5+ 2z − 0.5z2 z < 1.

It is easy to see that log⋆(z) has two continuous derivatives on R.

Put M⋆(λ) = −∑n
i=1 log⋆{n− λτ(Xi − µ)}. Then

• M⋆(λ) =M(λ) on Hλ.

• M⋆(λ) is a convex function on whole Rd.

Hence, M⋆(λ) and M(λ) share the same minimiser which is the

solution of (8).



Step 3: We apply a Newton-Raphson algorithm to compute λ

iteratively:

λk+1 = λk −
{
M̈⋆(λk)

}−1
Ṁ⋆(λk).

A convenient initial value would λ0 = 0, corresponding to pi = 1/n.

Remarks. (i) S-code “el.S”, available from

www-stat.stanford.edu/∼owen/empirical

calculates the empirical likelihood ratio

n∑

i=1

log{npi(µ)}

and other related quantities.

3.2 EL for smooth functions of means

Basic idea. Let Y1, · · · , Yn be i.i.d. random variables with variance

σ2. Note

σ2 = EY 2i − (EYi)2 = h(µ),

where µ = EXi, and Xi = (Yi, Y
2
i ). We may deduce a confidence

interval for σ2 from that of µ.

Theorem 4. Let X1, · · · ,Xn be d × 1 i.i.d. r.v.s with mean µ0
and |Var(X1)| 6= 0. Let θ = h(µ) be a smooth function from Rd

to Rq (q ≤ d), and θ0 = h(µ0). We assume

|GGτ | 6= 0, G =
∂θ

∂µτ
.

For any r > 0, let

C1,r =
{
µ
∣∣∣

n∑

i=1

log{npi(µ)} ≥ −0.5r
}
,

and

C3,r =
{
θ0+G(µ− µ0)

∣∣∣ µ ∈ C1,r
}
.

Then as n→∞,

P{θ ∈ C3,r} → P (χ2q ≤ r).

Remarks. (i) The idea of bootstrap calibration may be applied

here too.

(ii) Under more conditions, P{θ ∈ C2,r} → P (χ2q ≤ r), where

C2,r =
{
h(µ)

∣∣∣ µ ∈ C1,r
}
.

C2,r is a practical feasible confidence set, while C3,r is not since
µ0 and θ0 are unknown in practice. Note for µ close to µ0,

θ0+G(µ− µ0) ≈ h(µ).

(iii) In general, P{µ ∈ C1,r} ≤ P{θ ∈ C2,r}.

(By Theorem 3, P{µ ∈ C1,r} → P (χ2d ≤ r))



(iv) The profile empirical likelihood function of θ is

L(θ) = max
{ n∏

i=1

pi(µ)
∣∣∣ h(µ) = θ

}

= max
{ n∏

i=1

pi
∣∣∣ h
( n∑

i=1

piXi

)
= θ, pi ≥ 0,

n∑

i=1

pi = 1
}
,

which may be calculated directly using the Lagrange multiplier

method. The computation is more involved for nonlinear h(·).

Example 4. S&P500 stock index in 17.8.1999 — 17.8.2000 (256

trading days)

Let Yi be the price on the i-th day,

Xi = log(Yi/Yi−1) ≈ (Yi − Yi−1)/Yi−1,

which is the return, i.e. the percentage of the change on the i-th

day.

By treating Xi i.i.d., we construct confidence intervals for the

annual volatility

σ = {255Var(Xi)}1/2.

The simple point-estimator is

σ̂ =

{
255

255

255∑

i=1

(Xi − X̄)2
}1/2

= 0.2116.

S&P500 index
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The 95% confidence intervals are:

Method C.I.

EL [0.1895, 0.2422]
Normal [0.1950, 0.2322]

The EL confidence interval is 41.67% wider than the interval based

on normal distribution, which reflects the fact that the returns

have heavier tails.



4. Estimating equations

4.1 Estimation via estimating equations

Let X1, · · · ,Xn be i.i.d. from a distribution F . We are interested

in some characteristic θ ≡ θ(F ), which is determined by equation

E{m(X1, θ)} = 0,

where θ is q × 1 vector, m is a s× 1 vector-valued function.

For example,

θ = EX1 if m(x, θ) = x− θ,

θ = E(Xk
1) if m(x, θ) = xk − θ,

θ = P (X1 ∈ A) if m(x, θ) = I(x ∈ A)− θ,

θ is the α-quantile if m(x, θ) = I(x ≤ θ)− α.

A natural estimator for θ is determined by the estimating equation

1

n

n∑

i=1

m(Xi, θ̂) = 0. (11)

Obviously, in case F is in a parametric family and m is the score

function, θ̂ is the ordinary MLE.

Determined case q = s: θ̂ may be uniquely determined by (11)

Underdetermined case q > s: the solutions of (11) may form a

(q − s)-dimensional set

Overdetermined case q < s: (11) may not have an exact solution,

approximating solutions are sought. One such an example is so-

called the generalised method of moments estimation which is

very popular in Econometrics.

Example 5. Let {(Xi, Yi), i = 1, · · · , n} be a random sample. Find

a set of estimating equations for estimating γ ≡ Var(X1)/Var(Y1).

In order to estimate γ, we need to estimate µx = E(X1), µy =
E(Y1) and σ

2
y = Var(Y1). Put θτ = (µx, µy, σ2y , γ), and

m1(X,Y, θ) = X − µx, m2(X,Y, θ) = Y − µy,

m3(X,Y, θ) = (Y − µy)2 − σ2y ,

m4(X,Y, θ) = (X − µx)2 − σ2yγ,
and m = (m1,m2,m3,m4)

τ . Then E{m(Xi, Yi, θ)} = 0, leading to

the estimating equation

1

n

n∑

i=1

m(Xi, Yi, θ) = 0,

the solution of the above equation is an estimator θ̂ for θ.

Remark. Estimating equation method does not facilitate hypoth-

esis tests and interval estimation for θ.

4.2 EL for estimating equations

Aim: construct statistical tests and confidence intervals for θ

The profile empirical likelihood function of θ:

L(θ) = max
{ n∏

i=1

pi

∣∣∣
n∑

i=1

pim(Xi, θ) = 0, pi ≥ 0,

n∑

i=1

pi = 1
}

The following theorem follows from Theorem 2 immediately.

Theorem 5. Let X1, · · · ,Xn be i.i.d., m(x, θ) be an s× 1 vector-
valued function. Suppose

E{m(X1, θ0)} = 0,
∣∣∣Var{m(X1, θ0)}

∣∣∣ 6= 0.

Then as n→∞,
−2 log{L(θ0)} − 2n logn→ χ2s

in distribution.

The theorem above applies in all determined, underdetermined

and overdetermined cases.



Remarks (i) In general L(θ) can be calculated using the method
for EL for multivariate means in §3.1, treating m(Xi, θ) as a ran-
dom vector.

(ii) For θ = θ̂ which is the solution of

1

n

n∑

i=1

m(Xi, θ̂) = 0,

L(θ̂) = (1/n)n.

(iii) For θ determined by E{m(X1, θ)} = 0, we will reject the null

hypothesis H0 : θ = θ0 iff

log{L(θ0)}+ n logn ≤ −0.5χ2s,1−α.

(iii) An (1−α) confidence set for θ determined by E{m(X1, θ)} = 0

is

{θ
∣∣∣ log{L(θ)}+ n logn > −0.5χ2s,1−α}

Example 6. (Confidence intervals for quantiles)

Let X1, · · · , Xn be i.i.d. For a given α ∈ (0,1), let

m(x, θα) = I(x ≤ θα)− α.
Then E{m(Xi, θα)} = 0 implies θα is the α quantile of the distri-

bution of Xi. We assume the true value of θα is between X(1) and

X(n).

The estimating equation

n∑

i=1

m(Xi, θ̂α) =
n∑

i=1

I(Xi ≤ θα)− nα = 0

entails

θ̂α = X(nα),

where X(i) denotes the i-th smallest value among X1, · · · , Xn. We

assume nα is an integer to avoid insignificant (for large n, e.g.

n = 100) technical details.

Let

L(θα) = max
{ n∏

i=1

pi

∣∣∣∣
n∑

i=1

piI(Xi ≤ θα) = α,

pi ≥ 0,
n∑

i=1

pi = 1
}
.

An (1− β) confidence interval for the α quantile is

Θα = {θα
∣∣∣ log{L(θα)} > −n logn− 0.5χ21,1−β}.

Note L(θ̂α) = (1/n)n ≥ L(θα) for any θα. It is always true that

θ̂α ∈ Θα.

In fact L(θα) can be computed explicitly as follows.

Let r = r(θα) be the integer for which

X(i) ≤ θα for i = 1, · · · , r, and

X(i) > θα for i = r+1, · · · , n.

Thus

L(θα) = max
{ n∏

i=1

pi

∣∣∣∣ pi ≥ 0,
r∑

i=1

pi = α,
n∑

i=r+1

pi = 1− α
}

= (α/r)r{(1− α)/(n− r)}n−r.



Hence

Θα = {θα
∣∣∣ log{L(θα)} > −n logn− 0.5χ21,1−α}

=

{
θα

∣∣∣∣ r log
nα

r
+ (n− r) log n(1− α)

n− r > −0.5χ21,1−α
}
,

which can also be derived directly based on a likelihood ratio test

for a binomial distribution.

5. Empirical likelihood for estimating conditional distributions
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References on nonparametric estimation for distribution functions:

• Hall, P., Wolff, R.C.L. and Yao, Q. (1999). Methods for

estimating a conditional distribution function. Journal of the

American Statistical Association, 94, 154-163.

• Fan, J. and Yao, Q. (2003). Nonlinear Time Series: Nonpara-

metric and Parametric Methods. Springer, New York. Sec-

tions 10.3 (also Section 6.5).

5.1 From global fitting to local fitting

Consider linear regression model

Y = X1β1+ · · ·+Xdβd+ ε, (12)

where ε ∼ (0, σ2).

This model is linear wrt unknown coefficients β1, · · · , βd as the

variable X1, · · · , Xd may be

• quantitative inputs
• transformations of quantitative inputs, such as log, square-
root etc

• interactions between variables, e.g. X3 = X1X2
• basis expansions, such as X2 = X2

1 , X3 = X3
1 , · · ·

• numeric or “dummy” coding of the levels if qualitative

inputs

Put β = (β1, · · · , βd)τ

With observations {(Yi,Xi), 1 ≤ i ≤ n}, where Xi = (Xi1, · · · , Xid)τ ,
the LSE minimises

n∑

i=1

(
Yi −X

τ
i β
)2
, (13)

resulting to

β̂ = (Xτ
X)−1Xτ

Y,

where Y = (Y1, · · · , Yn)τ , and X = (X1, · · · ,Xn)τ is an n×d matrix.

The fitted model is

Ŷ = Xβ̂.

This is a global fitting, since the model is assumed to be true

everywhere in the sample space and the estimator β̂ is obtained

using all the available data.


